n = 3, \(uniq_{count}\) = 51

La configuration initiale est un carré de côté \(3\), ce qui implique \(2^{3*3} = 512\) combinaisons possibles. Cependant, pour rechercher des dynamiques uniques, nous devons cassé les symétries et translation.

Ci-dessous la dynamique de l’automate avec une configuration unique.

Population mourante (33)

../../../_images/00000.avi.gif ../../../_images/00001.avi.gif ../../../_images/00010.avi.gif ../../../_images/00012.avi.gif ../../../_images/00013.avi.gif ../../../_images/00014.avi.gif ../../../_images/00068.avi.gif ../../../_images/00069.avi.gif ../../../_images/00070.avi.gif ../../../_images/00071.avi.gif ../../../_images/00078.avi.gif ../../../_images/00084.avi.gif ../../../_images/00085.avi.gif ../../../_images/00086.avi.gif ../../../_images/00133.avi.gif ../../../_images/00134.avi.gif ../../../_images/00140.avi.gif ../../../_images/00141.avi.gif ../../../_images/00142.avi.gif ../../../_images/00143.avi.gif ../../../_images/00148.avi.gif ../../../_images/00159.avi.gif ../../../_images/00196.avi.gif ../../../_images/00197.avi.gif ../../../_images/00198.avi.gif ../../../_images/00199.avi.gif ../../../_images/00212.avi.gif ../../../_images/00213.avi.gif ../../../_images/00214.avi.gif ../../../_images/00215.avi.gif ../../../_images/00221.avi.gif ../../../_images/00222.avi.gif ../../../_images/00223.avi.gif

État stable (10)

../../../_images/00011.avi.gif ../../../_images/00015.avi.gif ../../../_images/00079.avi.gif ../../../_images/00094.avi.gif ../../../_images/00095.avi.gif ../../../_images/00150.avi.gif ../../../_images/00156.avi.gif ../../../_images/00204.avi.gif ../../../_images/00206.avi.gif ../../../_images/00220.avi.gif

Boucle (3)

../../../_images/00135.avi.gif ../../../_images/00149.avi.gif ../../../_images/00151.avi.gif

Objet en déplacement (2)

../../../_images/00157.avi.gif ../../../_images/00205.avi.gif

Population croissante (3)

../../../_images/00087.avi.gif ../../../_images/00158.avi.gif ../../../_images/00207.avi.gif